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Overview and Introduction

At the third meeting of the Science Advisory Panel, there was
extensive discussion of the most appropriate metric for determining
the relative numbers of Murrelets breeding in different forest stands.
Several metrics were discussed (see text of HCP). One of these
metrics was to use the ‘relative bird value’ of the stand, as proposed
by Redwood Sciences lab.

After lengthy discussion, the Panel concluded that some of the
assumptions of this method needed further testing, and depending on
the results of these tests, modification. Until such time as these tests
and modifications were complete, occupancy data on an acreage
basis were the most relevant and best supported technique to assess
Murrelet ‘take’. The Panel stated:

“Analysis should examine variation in occupancy as explained by
variation in habitat attributes. It should explore variance in per-visit
detection likelihood as a function of site attributes to estimate the
probability of making a correct call on occupancy as a function of
habitat variables. This gives a station specific per visit detection rate,
and hence your likelihood of getting a false negative as a function of
habitat type.

Assuming that we solve all these problems - we now have a
biologically meaningful metric. We should have looked at all the
assumptions that are inherent in this metric e.g. RBV, tested them,
and made adjustments on the basis of biases.”

Following these recommendations, Dr. Gary White (Colorado State
University) performed the necessary analyses, as shown in the
appended report.

The objective of Dr. White’s analysis was essentially to determine
whether some of the critical assumptions of the RBV approach were
met, and to indicate any necessary adjustments. Of most importance
was whether the probability of detecting occupancy behavior varies
with habitat type. If, for instance, Murrelets were more easily detected
in residual old-growth habitat than in unentered old-growth, this would



cause a systematic bias in estimates of bird density (the numbers in
unentered old-growth would be underestimated). If such a bias was
found, and was found to be large, a correction factor would be
calculable, and would be necessary before the RBV approach could
be adopted.

Discussion of findings

Dr. White’s analysis was successful in several important aspects.
Notably he determined that the probability of detecting Murrelets did
show substantive variation over time and space.

Of greatest importance was that p’, the conditional probability of
detecting occupancy on a given day, did show between habitat
variance. As shown in White’s Figure 2, p’ is highest in old growth
Redwood habitats, lower for residual forests, and lowest for habitat
type O1/RD (mixed Redwood and Douglas Fir old-growth). However
these differences themselves vary over the course of the season, as
p’ varies with Julian date.

Given that p’ varies with habitat, RBV value might be overestimated
in old-growth Redwood, and underestimated in residual and mixed
old-growth forests. However this error rate is very small. The overall
probability of detection of occupancy in a stand, x, is given by:

x = 1 - (1-p’)n

where n is the number of visits to a stand.

In Marbled Murrelet surveys, n is usually 8 (for simple detection of
birds) or 20 (for determination of occupancy). From the above
equation, we can estimate the maximum effect of variation in p’ with
habitat. For instance, in Figure 2, White shows that p’ varies in mid
season from values of .4 to .5 (approximately). From the above
equation we can calculate that, when n = 8, in a habitat where p’ is .4,
98.3% of occupied stands will be correctly detected. When p’ is .5,
the corresponding value is 99.6%. Hence the ‘underestimation’ of
Murrelets when p’ is 0.4 (relative to the number seen when p’ is 0.5)
= I- (98.3/99.6) or approximately 1.3%.



Such habitat effects, even at their most extreme value (mid-season)
are thus shown to be of very small influence on estimates of
occupancy, provided that n is on the scale indicated. At other times of
the year, habitat effects will be even smaller (see Figure 2).

The most important result from White’s analysis is thus that habitat
specific effects on probability of detection of occupancy are small,
provided that survey effort is adequate. Under these conditions, no
systematic adjustment to RBV values appears justified, and the
metric is thus supported in its existing form.

Also of interest from White’s analysis is his calculation of a value of p’
of 0.441. This value is substantively higher than that suggested for
other parts of the range of the Marbled Murrelet (approximately
0.258). This suggests a higher degree of confidence in the accuracy
of surveys carried out for this analysis than is generally the case.

Application of results

White’s analysis suggests that correction factors for the RBV
approach will produce only minor differences in estimation of Murrelet
habitat. At this point, correction factors are thought to be
unwarranted, and the assumptions of the RBV approach are
generally supported.

However, this HCP has elected not to use the RBV approach. Of the
different metrics available, the RBV approach is the least
conservative, and has the maximum estimate for the numbers of
birds protected on reserves. In keeping with the precautionary
principle applied elsewhere in this HCP, the most conservative metric
(number of occupied acres of habitat) has been used.
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Executive Summary

A model of detection probability of marbled murrelets at standardized surveys of stations
on Pacific Lumber Company and nearby timber lands is developed. Through the method of
maximum likelihood, it is shown that the all the information on probability of detection is
contained in the stations where murrelets were detected at least once during the year.

Logistic regression models of probability of detection of occupancy were developed. A
simple model with constant probability of detection across stations and visits predicts the
probability of detection per visit to be 0.441 (SE 0.019). This simple model is inadequate because
of a general lack of fit, and because detection probabilities are shown to change across the survey
season. Some of the variation in the data seems to be caused by the use of 81 different observers.
However, the large number of observers precludes developing a parsimonious model based on
observer effects.

The minimum AIC model was found to include Julian date (based on a 5th degree
polynomial model), year (1992 through 1995), habitat type (3 types of timber canopy cover
categories), and distance to the nearest body of water as measured on a 7.5 minute topographic
quad. Inclusion of habitat type and distance to the nearest body of water is probably an artifact of
the analysis in that each survey was classified as either occupied or not occupied. However, some
stations were occupied by more than a single pair, causing increased probability of detection of
occupancy. The inclusion of year may represent year-to-year differences in detection
probabilities, possibly caused by weather differences, or year effects may represent differences in
abundance of murrelets across years.

Unbiased estimates of the number of occupied stations can be obtained from the logistic
regression model developed here with the Horvitz-Thompson estimator.

Two suggestions for further work are provided: develop a murrelet observability rating for
each station included in the analysis, and conduct further work on estimating occupancy at
stations with the general model developed here that includes both detection probability and
probability of occupancy.
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Introduction

In this report, a model of the detection probability of marbled murrelets (Brachyramphus
marmoratus) is developed from standardized surveys conducted at survey stations on Pacific
Lumber Company and nearby timber lands. Surveys were conducted with the protocols described
by Ralph et al. (1994).

Statistical Model of Murrelet Detection

The statistical model assumed for this analysis is motivated from the work of Hunter et al.
(1997) and Stauffer et al. (1995). Assume that the probability of a station being occupied is p,
and the probability of detecting occupancy on survey i is p,‘. The pi’ are termed the detection
probabilities. The pi’ are assumed independent in that the detection probability for a given survey
is not affected by previous or subsequent surveys. This assumption is reasonable for marbled
murrelets because surveys are passive, i.e., observers do not affect the behavior of the birds. To
illustrate this model, the case with 3 surveys of each station will be presented. The status of a
station must be one of the following 8 mutually exclusive possibilities:

Occupancy Detected
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where the subscript for the number of stations with each set of occupancy detections is 1 if
occupancy is detected, and 0 otherwise. The number of stations surveyed is n, or the sum of the
third column of the table. The sum of the 8 cell probabilities is 1, so that a multinomial
distribution is defined. Note that the last cell, labeled “No detections,” consists of two terms: the
probability that no detections are made at an occupied station, and the probability that a station is
not occupied.
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The likelihood function for the observed data is constructed as the product of the 8 cell
probabilities, each raised to the power n,. The maximum likelihood estimates of the 4 parameters
can be solved numerically for a 2-survey problem. However, I have not been able to solve
analytically the 3-survey problem, for the pi’, but have found that the estimator ofp is

p^’ %ol + no10 + n100 + no11 + 501 + nl10 + nlll

’n@,‘(  1 - pi)(l  - ~7;)  + p,‘< 1 -$J/) + 6;)
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Note that the estimator for J? reduces to a simple binomial estimator for J?{ = j$ = 1, and its
variance estimator similarly reduces to the standard binomial variance estimator.

These estimates demonstrate that all the information to estimate the detection probabilities
is provided only by stations where occupancy was detected at least once, and that stations where
occupancy was never detected provide no information on the detection probabilities. Thus, the
only data needed to estimate detection probabilities is provided by the stations where at least one
survey resulted in occupancy being detected at the station. The detection model developed from
only stations with occupancy is fully efficient, with no loss of information by discarding stations
where murrelets were never detected.



Marbled Murrelet Detection Function 4

Statistical Methods

Logistic regression using PROC GENMOD from SAS Institute Inc. (1997) was used to
develop a model to estimate detection probabilities from data on stations with occupancy at least
once during the year. The dependent variable is whether or not a station was determined to be
occupied during a visit. The independent variables described in Table 1 were considered in
developing a model of detection probability. The linear model used in a logistic regression is
defined as

logit@?  = log p’
1 I1 -pl

= PO + pi (covariate i),

with the model extendable to multiple covariates. The method of maximum likelihood is used to
estimate the unknown parameters (PO, PI, . . . ) with the binomial distribution assumed as the error
structure on the residuals in the model. This model can be considered as a special case of the
statistical model described above, where the likelihood is partitioned into 2 parts. Only the
portion containing the detection probabilities is analyzed with logistic regression. Multiple
surveys for a station result in a detection probability for each survey. By including the date of the
survey as part of the model predicting detection probability, the temporal nature of the detection
probabilities across surveys is maintained.

Akaike’s information criterion (AIC) (1973) was used to determine the most parsimonious
model fitting the data. The “best” model is the model with the smallest AIC value. AIC is
defined as -2 x IogJLikelihood)  + 2 x number of parameters. The logJ(Likelihood)  portion
represents the goodness of fit of the model to the data. The better the fit, the smaller the term
-2 x lo&((likelihood).  However, the second term represents a penalty for the number of
parameters. The more parameters included in the model, the better the fit, but the bigger the
penalty.

Goodness-of-fit of the logistic regression model is assessed with the deviance
Ideviance = -2 x log((Likelihood)] divided by the degrees of freedom. The expected value of
this criterion is unity. Models with deviance/df  > 1 suggest over-dispersion (i.e., extra binomial
variance) exists. That is, the model does not fully explain the observed variation in the detection
probabilities. Heterogeneity of detection probabilities still exists, requiring additional explanatory
variables to account for the observed variation of the detection probabilities.

The first cut at model selection was to include each variable in Table 1 alone in a logistic
regression model. Based on these results, more complex models including multiple covariates
were developed. Only models that seemed biologically reasonable a priori were considered.
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Table 1. Independent variables used to develop a detection model with logistic regression for
marbled murrelets. The column labeled AIC is the AIC value for a model with just this variable
included.

Variable Name Description AIC

JDATE

YEAR

DIST2CST

DIST2H20

DIST20CC

DIST20G

DIST2RES

ELEV

FRACT

HABTYPE

AREA

PERIM

SHAPE

SLOPE

TRUMAJ

CANPCODE

Julian day, i.e., day of the year, or number of days since 1
January

Year surveys were conducted (1992, 1993, 1994, 1995)

Distance (m) to coast

Distance (m) to nearest water on a 7.5 min topographic quad

Distance (m) to nearest station with occupancy behavior

Distance (m) to nearest old-growth patch

Distance (m) to nearest residual patch

Elevation (m)

Fractal-shape index of associated patch

Habitat type of station or within 100 m (12 types)

Nearest timber class within 100 m of station

Area of habitat patch at station or within 100 m

Perimeter of habitat patch at station or within 100 m

Shape index of habitat patch at station or within 100 m

Slope (%) at station

Timber or vegetation classification at station

Canopy code

95 1.2026

958.0297

966.5979

962.9285

966.9158

968.6828

964.5022

967.9372

968.1091

973.4910

988.5136

968.5648

968.7017

967.3723

965.8509

990.2350

968.7346

Results

With no independent variables included in the model, the probability of detection is
estimated as 0.441 (SE 0.019) with an AIC value of 966.7426. However, this model shows
considerable over-dispersion, i.e., extra binomial variation. The ratio of the deviance to the
degrees of freedom for this simple model is 964.7426/702 = 1.3743, strongly suggesting that the
probability of detection is not constant across stations or visits. That is, the assumption that the
detection probability remains constant across stations and surveys is invalid.



Marbled Murrelet Detection Function 6

One explanation for the observed over-dispersion is variation across sites because of
variation in murrelet density. However, when a variable consisting of the maximum number of
mm-relets detected as occupying a station (MAXOCC) was used as a predictor variable, the
deviance/df ratio declined only a small amount to 1.3677. This variable is a significant predictor
of the probability of detecting murrelets at a stations (P < 0.001), but is only measurable after-the-
fact, so is not useful in developing a detection function. That is, the use of this variable in a
detection function is circular, and is only used here to evaluate its impact on deviance. The small
decline in deviance/df suggests that the cause of the over-dispersion is not due to variation in
murrelet density.

Most likely, part of this over-dispersion is explained by observers. Eighty-one different
observers were reported in the data base, with significant differences between observers
(x2 = 104.925, df = 80, P = 0.032). However, a parsimonious model to remove this over-
dispersion from observers is not possible because of the large number of observers, and because I
know of no way to objectively pool observers into categories. Thus, some amount of over-
dispersion will remain in the data even when the covariates from Table 1 are used to model
detection because of the observer differences.

AIC results for each variable in Table 1 are shown in the table. The variables JDATE,
YEAR, DIST2H20, and DIST2RES were considered further in developing a model of detection
probability because these variables have the smallest AIC values. In particular, JDATE provided
the smallest AIC value of all the single-variable models considered. Because detection
probabilities were thought to change over the period when surveys are conducted, I evaluated
polynomial models of JDATE.

Polynomial Power Number of Parameters AIC

1 2 95 1.2026

2 3 947.5 148

3 4 946.9036

4 5 941.8112

5 6 939.9904

6 7 94 1.9904

These results suggest that a 5th degree polynomial model is required to model the effects of Julian
date on detection probability. A plot of the resulting function is shown in Figure 1, with 95%
confidence intervals on the predicted value included. The maximum detection probability is on
day 202, or July 21. Actual surveys were conducted from Julian day 104 to 216, so the graph
encompasses the survey dates.



Marbled Murrelet Detection Function 7

The habitat variables TRUMAJ and MAJ are ranked poorly by AIC because of the large
number of parameters required to model them (27 and 24, respectively). Likewise, HABTYPE
requires 9 parameters in the model. However, inspection of the frequency of each habitat type in
the data where at least one occupancy was detected during the year suggests that the habitat types
should be further restricted because so few observations occurred for 5 of the habitat types:

HABTYPE Habitat Patch Description
Code

Frequency Percent

>100m Habitat patch > 100 m from station 16 2.3

O1/R Old growth with >50% cover of redwoods 121 17.2

Ol/RD

01/D

02/RD

R1/R

Old growth with >50% cover of redwoods and
Douglas fir

Old growth with >50% cover of Douglas fir

Old growth with <50% cover of redwoods and
Douglas fir

Residual growth with >50% cover of redwoods

265 37.7

4 0.6

8 1.1

8 1.1

R2/R Residual growth with <50% cover of redwoods 258 36.7

R2/RD

R2/D

Residual growth with <50% cover of redwoods and
Douglas fir

Residual growth with <50% cover of Douglas fir

14 2.0

9 1.3

Therefore, only habitat type 01/R, Ol/RD, and R2/R were used in further analyses. With this
reduced data set, habitat type becomes an important variable (Table 2) because only 2 parameters
are required to model the habitat type variable, as opposed to 8 parameters for the full list of
habitat types.

From Table 2, the most parsimonious model is determined to be Julian date as a 5th degree
polynomial, year, habitat type, and distance to nearest water body. The numerical estimates and
other output from SAS are provided in Appendix A.

In Figure 2, this detection model is plotted for the 3 habitat types and Julian date,
assuming that year is 1992 and distance to nearest water body is 0. Distance to nearest water
caused a slight decline in detection probability as distance to water increased. The probability of
detection is greatest for habitat type 01/R, lowest for habitat type O1/RD, and intermediate for
habitat type R2R. In Figure 3, this same detection model is plotted for the 4 years and Julian
date, assuming that habitat type is 01/R and distance to nearest water body is 0.
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The minimum AIC model is still not a suitable model for estimating detection probabilities
because the deviance/df value for this model is 825.8577/632 = 1.3067. This high value suggests
that the information to estimate detection probabilities is not contained in the list of variables in
Table 1, and that additional variables are needed to estimate station and visit-specific detection
probabilities.

Table 2. Multiple covariate models used to develop a detection model with logistic regression for
marbled mm-relets.

Model Number of
Parameters

AIC

Intercept Only

JDATE^5 (5th degree polynomial of Julian date)

HABTYPE

JDATE^5 + YEAR

JDATE^S + YEAR + HABTYPE

JDATE^S + YEAR + DIST2H20

JDATE^5 +  YEAR + DIST2RES

JDATE^S + YEAR + HABTYPE + DIST2H20

JDATE^5 + YEAR + HABTYPE + DIST2RES

JDATE^5 + YEAR + HABTYPE + DIST2H20 + DIST2RES

JDATE^5 + YEAR + DIST2H20 + DIST2RES

JDATE^S + HABTYPE

JDATE^5 + HABTYPE + DIST2H20

JDATE^S + HABTYPE + DIST2RES

JDATE^5 + HABTYPE + DIST2H20 + DIST2RES

1 885.7837

6 865.6452

3 883.1654

9 854.8195

11 850.2556

10 853.1801

10 853.1801

12 849.8577

12 850.9000

13 851.1550

11 852.7899

8 859.5311

9 858.1918

9 859.1944

10 858.9042

Discussion

The inclusion of habitat type and distance to nearest water body in the minimum AIC
model suggests that these variables influence detection probabilities. However, I am inclined to
think that these variables are more likely to influence the probability that mm-relets occupy a
station. The reason that these variables get included in the model is that occupancy of a station is
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treated as either yes or no, but in reality, occupancy occurs in degrees. Some stations have more
than 1 pair of murrelets in occupancy, which results in increased probability of detection. As a
result, the model predicts greater detection probabilities, when in reality, habitat effects are
increasing detection probability only because of a greater number of murrelets at the station.
Credibility for this argument is provided when the variable MAXOCC, consisting of the maximum
number of birds detected occupying the station during the year, is included in the model. The
variable DIST2H20 is no longer significant (P = 0.476), suggesting that the influence it provided
in the best detection model is replaced by the MAXOCC variable. MAXOCC is clearly correlated
with the suitability of the station for murrelets.

Inclusion of year in the minimum AIC model suggests year-to-year differences in detection
probabilities. This difference may be due to year-to-year differences in occupancy rates reflecting
murrelet abundance, and be related to the problem discussed in the preceding paragraph
concerning habitat variables. However, the effect of year may also be related to differences in
weather from year to year (e.g., fog, drizzle, or other weather that causes observability problems),
causing differences in detectability. Regardless of which of the above reasons explains why year
was included in the model, the fact that year is an important predictor of the detection probability
implies that examining trends in occupancy rate requires differential corrections by year,
particularly given the range (>0.2) of variation in detection probabilities.

An alternative explanation for why year is included in the model is that year-to-year
differences in the areas surveyed could explain the effect, That is, only high quality mm-relet
habitat might have been surveyed in 1995, compared to poorer quality habitat during 1992-1994,
causing the apparent year-to-year observed differences.

Plots of the detection probability as a function of Julian date consistently show a strong
decline in detection probability at the beginning of the survey season. This decline may suggest
that surveys should be started earlier in the year. However, a confounding of only surveying high
occupancy stations early in the season could also cause this initial early decline. More
interpretation of this early decline in detection probability is warranted.

The high deviance/df value for the minimum AIC model suggests that additional
information is required in the model to estimate detection probabilities. I think that a more
appropriate variable could be constructed through observer savvy. That is, observers have some
sense of how detectable murrelets are at a station, given that murrelets are present. A team of
observers could independently rate a series of stations from low (1) to high (10) detection, where
the stations are selected to maximize the range of observability. The mean of the team’s ratings
would be assigned to the station, and future observers could then calibrate their observability scale
by visiting the stations. In this way, observers could be trained to estimate observability reliably
and consistently, and an observability rating could be assigned to each station in future surveys. I
think that this observability variable, although somewhat subjective, would result in a better model
of detection when combined with JDATE than the model developed here.
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The logistic regression developed in this paper can be used with the approach of
Steinhorst and Samuel (1989) and Samuel et al. (1987) to estimate the total number of occupied
stations, even when stations are only surveyed one time. A modified Horvitz-Thompson
estimator (Horvitz and Thompson 1952, Cochran 1977:259-261) can be used. Suppose that n
stations are surveyed, with the results for each station coded as yi = 1 for station i when a

detection is made, and yi = 0 when no detection is made. Then, the Hot-&-Thompson estimator

n Y.of the number of occupied stations is ?*r = c +,
i=l Pi

where i3, is the probability of a detection at

station i as predicted by the logistic regression equation. Full details and the variance estimator
are provided by Steinhorst and Samuel (1989). Note that the variance estimator given in Cochran
(1977:260) is not correct for this situation because Cochran assumes that the detection
probabilities (pi ) are known exactly, and are not estimates as is the case here. Steinhorst and
Samuel (1989) provide for the additional variation from the estimated detection probabilities in
their formulae.

The detection models proposed by Max et al. (Undated) are essentially special cases of the
model developed here. Their models assume that detection probabilities are constant across
stations and date, and hence correspond to the case of a logistic regression with only an intercept.
Further, the estimators they propose are essentially equivalent to the maximum likelihood
estimators developed by Darroch (1958) (also model M0of Otis et al. (1978:21-24)) for the
murrelet example, where stations are visited even after detections are made at the station, and
Zippin (1956, 1958) (model Mb of Otis et al. (1978:28-32)) for the spotted owl example where
visitation stops once a detection is made. Both of these estimators were originally developed to
estimate population size (N), which in the situation considered here corresponds to the number of
occupied stations. Max et al. (Undated) consider in some detail the degenerate case where the
estimated number of stations occupied exceeds the number of stations surveyed.

Suggestions for Further Research

1. Develop and implement an observability rating for each murrelet survey station, and
incorporate this rating into a detection model.

2. Further work on estimating the presence of murrelets at survey stations should incorporate
the detection model developed here (or an improved model as suggested above) as part of
the general statistical model that includes the probability of a station being occupied. This
research would require software to implement numerically the general model of murrelet
detection that includes both the probability of murrelet occupancy and probability of
detection.
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Suggestions for Improving Surveys

1. Decrease the variation across observers by reducing the number of observers, and having
each of them do more surveys.

2. Incorporate a variable that directly relates to murrelet observability at each station.

3. Further investigate the reason for the initial decline of the detection probability, and if this
decline is real, initiate surveys earlier in the year.
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Figure 1. Marbled murrelet detection fbnction  with 95% confidence intervals on the predictedFigure 1. Marbled murrelet detection fbnction  with 95% confidence intervals on the predicted
value (“mean”) modeled as a 5” degree polynomial of Julian date.value (“mean”) modeled as a 5” degree polynomial of Julian date.
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Figure 2. Predicted marbled murrelet detection probability from the minimum AIC model. Julian
date is modeled as a 5* degree polynomial for the 3 habitat types that represent 95% of the data
set. Year is set to 1992, and distance from nearest water is set to zero.

0.8

0.7
E
5 0.6

3 0.5

z 0.4
27
g 0.3
m

PO 0.2
n’

0.1

0

tI . . . . . . . . . . ..__...___..........................  -.-.
\k @
*-* S-

. . . .
- -

,....-... ?I...r...*...t  . . ..___.....____..........................................  _...

1%;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . LT. . . . . . . _ . . . . . . . . . * . . . .___.



Marbled Murrelet Detection Function 15

Figure 3. Predicted marbled murrelet detection probability from the minimum AIC model. Julian
date is modeled as a 5* degree polynomial for the 3 habitat types that represent 95% of the data
set. Habitat type is set to 01/R, and distance from nearest water is set to zero. The detection
probabilities for 1993 and 1994 are nearly identical, so that the lines overlay.
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Appendix A - SAS Output for minimum AIC Model

Detection model for Year, Habtype, Distance to H20, and Julian Date

D e s c r i p t i o n

D a t a  S e t
Distribution
Link Function
Dependent Variable
Dependent Variable
Observations Used
N u m b e r  O f  E v e n t s
N u m b e r  O f  T r i a l s

Class

The GENMOD Procedure

M o d e l  I n f o r m a t i o n

V a l u e L a b e l

WORK.DETECT
BINOMIAL
LOGIT
VISITDET O c c u p a n c y  D e t e c t i o n
ONE
644
284
644

Class Level Information

L e v e l s  V a l u e s

HABTYPE 3 01/R OIIRD R2/R
YEAR 4 1 9 9 2 1 9 9 3  1 9 9 4 1 9 9 5

Criteria For Assessing Goodness Of Fit

Criterion OF Value Value /OF

D e v i a n c e 632 825.8577 1 . 3 0 6 7
Scaled Deviance 632 825.8577 1.3067
P e a r s o n  C h i - S q u a r e 632 645.3980 1 .D212

Scaled Pearson X2 632 645.3980 1 . 0 2 1 2

L o g  L i k e l i h o o d . - 4 1 2 . 9 2 8 9

16
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A n a l y s i s  O f  P a r a m e t e r  E s t i m a t e s

P a r a m e t e r OF E s t i m a t e S t d  E r r

INTERCEPT 1 8 4 6 . 5 5 8 1 4 0 9 . 6 5 4 0
YEAR 1 9 9 2 1 - 0 . 6 7 2 1 0 . 3 0 1 6
YEAR 1 9 9 3 1 - 0 . 8 7 0 8 0 . 2 7 0 1
YEAR 1 9 9 4 1 - 0 . 8 7 5 2 0 . 2 5 0 1
YEAR 1 9 9 5 0 0 . 0 0 0 0 0 . 0 0 0 0
HABTYPE 01 /R 1 0 . 4 7 1 6 0 . 2 3 8 9
HABTYPE 01 /RD 1 - 0 . 1 6 2 3 0 . 1 9 0 0
HADTYPE RZ/R 0 0 . 0 0 0 0 0 . 0 0 0 0
DISTZHZO 1 - 0 . 0 0 0 9 0 . 0 0 0 6
JDATE 1 - 2 8 . 4 3 2 4 1 3 . 3 0 7 9
JDATEP 1 3 7 7 . 2 0 9 3 1 7 0 . 6 9 3 9
JDATEJ 1 - 2 4 7 . 0 1 1 2 1 0 8 . 0 8 6 3
JDATE4 1 7 9 . 8 2 4 4 3 3 . 8 0 2 8
JDATES 1 - 1 0 . 1 8 1 5 4 . 1 7 9 1
SCALE 0 1 . 0 0 0 0 0 . 0 0 0 0

NOTE : T h e  s c a l e  p a r a m e t e r  w a s  h e l d  f i x e d .

L R  S t a t i s t i c s  F o r  T y p e  3  A n a l y s i s

S o u r c e OF ChiSquare  PrXhi

YEAR 3 1 4 . 3 3 4 0 0 . 0 0 2 5
HAQTYPE 2 6 . 8 9 6 0 0 . 0 3 1 8
DISTZHZO 1 2 . 3 9 7 9 0 . 1 2 1 5
JDATE 1 4 . 5 5 9 1 0 . 0 3 2 7
JDATEP 1 4 . 8 8 6 6 0 . 0 2 7 1
JDATW 1 5 . 2 3 5 7 0 . 0 2 2 1
JDATE4 1 5 . 6 0 1 2 0 . 0 1 7 9
JDATE5 1 5 . 9 7 3 6 0 . 0 1 4 5

ChiSqua- PrXhi

4 . 2 7 0 5 0 . 0 3 8 8
4 . 9 6 5 1 0 . 0 2 5 9

1 0 . 3 9 4 0 0 . 0 0 1 3
1 2 . 2 4 4 3 0 . 0 0 0 5

. .
3 . 8 9 7 9 0 . 0 4 8 3
0 . 7 2 9 6 0 -3930

. .

2 . 3 5 4 2 0 . 1 2 4 9
4 . 5 6 4 7 0 . 0 3 2 6
4 . 8 8 3 5 0 . 0 2 7 1
5 . 2 2 2 7 0 . 0 2 2 3
5 . 5 7 8 6 0 . 0 1 8 2
5 . 9 3 5 8 0 . 0 1 4 8

.




